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SUMMARY

A theoretical investigation is made of airfoil profiles at supersonic
velocities to determine the shapes having minimum pressure drag at zero
lift for various given auxiliary conditions, Shock-expansion theory is
employed, thereby extending the applicebility of the results through the
hypersonic range. Curves are presented for Mach numbers of 1.5, 2, 3,
4, 6, 8, and o which enable the shape and the drag of an optimum profile
to be determined readily if the base pressure is known from experiments,
Examples are presented of optimum profiles determined with the aid of
experimental base pressure data, Variations in profile shape are inves-
tigated to provide information on the degree to which deviations in
shape from the optimum can be made without resulting in a significant
drag increase,

A comparison of optimum profiles determined by the shock-expansion
method of this report with corresponding profiles determined by the
linearized-theory method of a previous report shows only small differ-
ences in shape at Mach nurbers up to infinity even though the linearized
theory at high supersonic Mach numbers breaks down completely insofar as
the drag of the profile is concerned. The experimentally observed
dependence of base pressure on trailing-edge thickness is found to have
a significant effect on the shape and drag of optimum profiles of small
thickness ratio. Curves are presented which show that for thin airfoils
the use of a tralling-edge thickness consgiderably greater than the theo-
retical optimum can result in an excessive drag penaslty at moderate
supersonic Mach numbers, though not at hypersonic Mach numbers.

INTRODUCTION

In 1933 Saenger observed that for the extreme case of flow at
infinite Mach number an airfoil designed to have minimum pressure drag
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would heve its maximum thickness at the tralling edge. (See refer=- -
ence 1.) A related result can be inferred from the numerical calcula~
tions of Ivey (reference 2) which indicate that the drag of a 1l0-percent-
thick-wedge airfoil at & Mach number of 8 is less than that of a double-
wedge airfoil having the same thickness ratio. In both of these cases
the desirability of employing a thick trailing edge in conjunction with
a small surface slope may be attributed to the fact that at hypersonic
Mach numbers the suction forces (forces due to pressures below ambient)
are small compared to the positive pressure:forces, even vhen the suctlon
force corresponds to a vacuum. Recently, Smelt (reference 3) has dis-
cussed this latter characteristic of hypersonic flow and its possible
application to the determination of efficient airfoil shapes for use at
very high Mach nuwbers. The investigations of Saenger, Ivey, and Smelt,
however, do not provide general gquantitative information on the airfoil
profile having minimum pressure drag in hypersonic flow because of two
limitatlions of their snalyses: Alrfoils having a trailing-edge thickness
less than the maximum airfoll thickness were . not considered, and the
airfoil structural characteristics were not-considered (comparisons were
made on the basis of a given airfoil thickness),

At low and moderate supersonlic Mach numbers the suction forces on
an airfoil can amount tc several times the positive pressure forces,
particularly if an excessively thick trailing edge 1s employed. As a
result, the optimum trailing-edge thickness in this lower Mach number
range depends to & great extent on the base pressure. By presuming that
the base pressure is known from experiments, and that the airfoil profile
must satisfy a given structural requirement (such as a given section
modulus or a given section moment of inertia), & method of calculating
the profile of minimum pressure drag at zero 1ift has been developed by
the present writer in reference 4, Although the basic equations devel-
oped in reference 4 for calculating such profiles are. applicable to
higher-order theories, & detailed solution was given only for the case
of linearized supersonic flow.

Because of the well-known shortcomings of linearized theory, it was
thought worthwhile to conduct an investigation parallel to that of
reference L in which the shape and drag of optimum airfolls are determined
from shock-expansion theory instead of linearized theory. Shock-expansion
theory appears adequate for this purpose, particularly in view of the
recent investigation of Eggers and Syvertson (reference 5) which indicates
that shock-expansion calculations sccurately determine surface pressures
on thin airfoils in inviscid flow at Mach numbers from Jjust above that
for bow-wave attachment to infinity. From the viewpoint of the engineer
who always has to make design compromises, it was thought desirsble in
the present study also to determine how much the optimum-profile shape
can be altered, especially near the trailing edge, and still not increase
the drag excessively. The purposes of the present investigation, there-
fore, were (1) to develop a ussble method for determining the shape and
drag of optimum profiles in the Mach number range beyond that covered
adequately by linearized theory (step-by-step detalls involved in applying
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the method developed are given in an appendix), and (2) to determine
curves showing the rate at which the total pressure drag increases as
the profile shape deviates from the optimum,
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NCOMENCLATURE

airfoil chord

bressure drag coefficient
constant depending on 7y
trailing-edge thickness

/h
dimensionless trailing-edge thickness \{

. 1 2 dx
given value of auxiliary integral'{ﬁf rrrey i i

(+/2)°
dimensionless value of I [?27575:3
normalizing factor for &(Y), defined by equation (10)
length of surface of constant thickness
dimensionless length of surface of constant thickness <%)
Mach number -
parameter appearing in definition of I
pressure

total pressure

pressure coefficient %_;;Eg
5PV

Reynolds number

chordwise distance from leading edge to first downstream position
of maximum thickness

maximum thickness of airfoil
velocity

chordwise distance from leading edge to point on airfoil surface
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ordinate of upper surface of airfoil
dimensionless distance <’§>

dimensionless distance <Uy§>

ratio of specific heats (1.40 for air) .
arbitrary constant

mags density

local angle of Inclinetion of airfoil surfeaece with respect to
chord Iine (tan™ly') :

characteristic function determining optimum-profile shape, defined
by equation (9)
characteristic function \defined by equation (12)

Subscripts

ai?foil surface at leading edge
alrfoil surface at trailing edge
free stream

bagse, or trailing edge, o: airfcil

circular-arc biconvex airfoil having sharp trailing edge
Superscripts
differentiation with respect to x
ANALYSIS

Solution for Arbltrsry Structural Requirement

As in reference 4, it 1s assumed throughout this analysis that the

optimum airfoil has a sharp leading -edge, a fixed chord length, and is
set at the zero~lift angle. It also is assumed that the flow is a
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purely supersonic two-dimensional flow of an inviscid, nonconducting,
perfect gas. Since the surface pressures on the top and bottom of an
airfoil can be calculated independently in a supersonic flow, it follows
that at zero 1ift the optimum profile will be symmetrical about the
chord line, The mathematical problem formulated is to find the airfoil
ordinate function y(x) which minimizes the pressure drag,

2 ¢ h '
=cfPyrax-mg (1)
for a.given value of the auxiliasry integral

1. 9
I=3[ b To/mye o | (2)

By selecting various values of the paremeters n and g, & wide variety
of structural requirements can be represented for both thin-skin and
golid-section structures. Some of the different structural criteria
represented by equation (2) are:

n o} Structural criterisa

1 0 | given torsional stiffness, or torsionel strength, of
thin-skin structure (given cross-section ares)

2 0 | given bending stiffness of thin-skin structure

3 0 | given bending stiffness or given torsional stiffness of
solid-gection structure

given bending strength of thin-skin structure

3 1 | given bending strength of solid-section structure

Basic equations.- The equations which the optimum-airfoil ordinate
function y(x) must satisfy can be obtained by considering an infinitesi-
mal variation in profile shape &y(x) that is arbitrary except for the
requirement that 8I = O. By also requiring that &cg = 0 the following
three equations result (see reference L4):

& (p4 y'?.l) +amyt=0 (3)
dx oy!
Phb=PF +y' ézé) (&)
A
1 0 — -— n~g '
==2T (T =1/(t/2)") (5)

In the derivation of these equations it was assumed that P = P(y', yo', M) ;s
but no particular functional form was assumed. Equation (3) is the differ-
ential equation which the airfoll ordinate function y(x) must satisfy along
the curved surfaces, for example, OA and BC in figure 1. A first integral
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of this differential equation, satisfying the condition y' =0 at
y = t/2, can be cbtained by multiplying both sides by y' and integrating.

oy I (32)

Equations (3) and (3a) involving the arbitrary constant ) do not apply
to the straight midsection (AB in fig. 1) along which the airfoil thick-
ness is constant, Equation (4), termed an end condition, represents the
relation which must be satisfied between the base pressure coeffi-

clent Pp, the surface pressure coefficient Py Just upstream of the
trailing edge, and the corresponding surface slope y;'. As will be
seen this equation determines the optimum trailing-edge thickness.
Equaetion (5) relates the optimum length of straight midsection 1 to
the dimensionless value of the structural integral T. This latter
equation shows that the length of stralght midsection is always zero
vhen the suxiliary condition represents s given stiffness (o = 0), but
for the values of n considered is & sizaeble fraction of the chord

when the auxiliary condition represents a gilven strength (o = 1).

Solution for ¥, H, and X.~ From equation (3a) the constant » 1is
readily evaluated in terms of yo'. There results

/2P = 30 (57) (3)

By employing the dimensionless varisbles Y = y/(t/2) and H = h/t,
equations (3a) and (3b) yileld - ) .

_ . _y'2(or/3y1) 6
= Ry e (6

and hence
Hn =1 - ..Ylta(aP/ay')l (7)

YO'}(aP/BY' )O

It is to be noted that the structure of thesé equations, and all sub-
sequent ones, is such that the quantities Py, I, and M, which are pre-
sumed to be given do not appear as independent varisbles, Instead, they
are related parsmetrically to the shape and drag of the optimum profile
through the paremeter 7y'. For example, equatlon (7) gives

H(y,'s Yo's M), and equation L gives Po(y1', Yo's Mw), hence by select-
ing arbitrary values of yi' the function H(Pp, yo!, M.) cen be deter-
mined. Moreover, as will be seen later, I "depends on ¥yo', My and H,
go that the parametric structure of the equations ultimately yields the
desired function H(Pb, I, M).

The differential equation (35) and the sppropriate boundary condi-
tions y(0) =0, y(8) =t/2, and y(s + 1) = t/2 determine x as a
function of y by & single gquadrature. - .
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( Y TS on
JF oP ay' dy upstream

A/(t725n - y2 surface

f eI dy e
JOP/dy! dy on

(CORNES Jx (s + 1) f
+ 1) + d tr
° s /2 J(8/2)2 - ¥ arrace
L

The algebraic sign to be selected for easch radical is determined by the
requirement that x increases as y increases on the upstream surface,
and as y decreases on the downstream surface. The above relation 1s
more conveniently expregsed in terms of the dimensionless quantities

Y =y/(t/2), X =x/s, and L. = 1/s. After eliminating » A by evaluating
the above integral at x = s, there isg obtained for the dimensionless
shape

E(Y) on upstream surface .
X = (8)

g L + §Y) on downstresm surface ,

where &(Y) is defined as the quotient of two integrals'

£(T) = fz,/ /oy’ av/y T =10
s SRy T - 1E

The definite integral which normelizes £(Y), such that £(1) = 1, will
for sake of brevity be designated by Jjn. Thus

=fl 3P ay )
e (10)

Actually, for completeness the function £(Y) should be written as
E(Y; Mo, n, Yo') because it depends on the three quantities M,, n, and
Yo' as well as the variable Y. For brevity, though, it is written

simply as &(Y).

(9)

Since x 1s a double-valued function of y over the chord length,
£(Y) is also a double-valued function of Y. A sketch of a typical
curve of Y versus £ is shown in figure 2. For a given dimensionless
ordinate Y, one of the two values of £ represents the dimensionless
chordwise distance from the lesding edge to a point on the upstream
surface, whereas the other value represents (apart from an additive
term L) the dimensionless chordwise distance from the leading edge to
the point on the downstream surface which has the same ordinate Y. It

is to be understood that in determining X from equation (8) the appro-
priate value of £(Y) must be used for each surface; thus, for a given Y

1gince the integrands are singular at the point Y = 1, numerical compu-
tations of the function £(Y) must allow for this singularity. A
simple method of doing this is outlined in appendix A.
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the value of &(Y) appropriate to the downstream surface always 1s
greater than for the upstream surface.

From the foregoing end the fact that §E(Y) is independent of Py
and o0, it follows that & curve of Y versus E(Y), such as is illus-
trated in figure 2, determines the curved portions of an infinite number
of optimum profiles, all having the same values of yo', My, and n. It
mey be noted that o (equation (5)) essentially determines the length
of straight midsection which is to be placed between the two curved
portions after seperating them at the point where ¥ = 1 (point AB in
fig. 2); whereas Pp (equations (k) and (7)) essentially determines H,
the value of Y beyond which the downstream portion of the curve 1s not
used in a given.case, It is noted that although the chord is fixed,
the value of £ corresponding to the trailing edge is not., This is
because ¢ = x/s changes whenever s changes.

As may be deduced from equation (7), yi' determines H for a
given n, Mg,and y,'. Moreover, y;' determines Pp from equation (4).
Hence, for any given value of bage pressure the point on the downstream
surface which corresponds to the trailing-edge position can be indicated
on each &(Y) curve., (See fig. 2 where the point corresponding to zero
base pressure is indicated.)

Solution for L,'T, t/c, and s/c.- Turning now to the determination
of the optlmum length of straight midsection 1, one sees from eque-
tion (5) that such s determination will also give I. Since 1 is a
function of yo' and the given quantities n, o, Pp, and M., this
enables Yo', the quantity used as a parameter in the present analysis,
to be related to thé quantity T, which is a more convenient one to use
if I 1is the actual quantity given. Starting with the definition of T
the following equations result: :

T = 1/(t/2)"°

=§fo° Y9 ax =§f(;’/5 [1-(1-7Y") ax

—-[— -f (1 - 1% —dY:l

or, by using the relation
ax _ /O /3y
ay j T - y0 - - ' .(11)”

which follows from equations (8), (9), and (10), there results

/ﬁ/ (l-Yn) ay
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For convenience the right-hand member of this equation is defined
as n(H).

n(H)E-L/\H P_(1.v%) ay (12)
Jn [o] By'
From equations (8) and (5),
% =L + £(H)
e
=E'EI+§(H)

Combining this with the sbove relation between T and s/c gives

5 _ n =~ g o
¢ n&(E) - on(E) (13

and
T - £(F) - n(F) (11)
£ () - = n(E)

Recalling that H is determined by Pp for a given E(Y) curve (given
Mo 1, ¥o'), one sees that equation (1L4) determines T as a function

of My, n, g, Py, and y,'. A convenient determination of T, of course,
can only be made if the function n(H) in addition to E(Y) has been
computed. The function n(H), which for completeness should be written
as N(H; Mw N, ¥ '), 1s somevhat easier to compute than &(Y) since it
is not singular at Y = 1. Attentlon is called to the fact that all the
above integrals with limits ranging from Y = 0 to Y = E, as in equa-
tion (12), for example, really correspond to integration over both
curved surfaces, first from Y =0 to Y = 1, and then from Y=1 to Y = H.

With the position of maximum thickness determined by equation (13),
the maximum thickness ratio can be determined in terms of the surface

slope at the leading edge.
Yy 328 /dy
dax o t \dx/o

t-2(2) e

or, from equation (11), in an alternate form

tap(d)m /@5_—): (152)

Calculation of pressure drag of an optimum profile.- In reference L
it was shown that for linearized supersonic airfoil theory the pressure

' (15)
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drag coefficient of an optimum profile was a simple algebraic function
of certain gquantities such as H and s/c. Since these quantities are
known once the shape of the optimum profile 1s determined, a separate
integration is not required in order to calculate the pressure drag.
Fortunately, a similar algebraic relation.can also be developed for the
present case, In so doing, integration by parts is employed starting
with the defining equation for pressure drag.

ol

a= ey p Rl frve - ng (16)

In these equations, and subsequent ones, the integration is carried out
only over the two curved portions since the straight midsection can con-
tribute no drag. From equation (3a),

= =5t () <754 (®)
= -\ [(£/2)" - ¥7] ()

hence, substituting into equation (16) and esgain integrating by parts
gives

- enow ()] A e

MS, HE/2)" - (a+ 1)y) ax

The first bracketed term on the right side vanishes by virtue of equa-
tion (L4). The remaining integrals cen be simplified by noting that

¢ -
= 1/ y2 T 1 n_ . aP
I=E‘é- W&X,E—GE, and X(t/g) _y_ ay
There results '
cq = 2y g‘ff) (n+1-0)f-1] (17)
o

This equation enables the pressure drag to be readily calculated 1f the
base pressure is given, since Py, determines H for a given y,' and
My, and H determines T 1in accordance with equation (14). Thus,
equation (17) involves the base drag implicitly, but not explicitly.
For the special case of linearized supersonic flow,

=2/ M2~ 1

and the above equation for cg can be shown to reduce to the correspond-
ing equetion for pressure drag developéd in reference 4.
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Closed~Form Solution for the Special Case of Given
Cross=-Section Area n =1, d =0 .

When the cross=section area of a profile is prescribed (n = 1,
o = 0), corresponding to a given wing volume, torsional stiffness, or
torsional strength of & thin-skin structure, then the differential
equation (3) can be integrated immediately with respect to x to yield
a solution in closed form for the airfoil shape. There results

-AX =P 4 y' %2— + constant (18)
yf

The constants can be eliminated by evaluating this expression at x =0
and x = 8 to obtain

P + y'(3P/3y') - P(0)
Po + yo’(BP/By’ )O - P(O)

= =X=§y)=1- (19)

Here P(0) is the pressure coefficient at y! = 0, and Po 1is the
pressure coefficient at x = 0. For practical purposes P(0) usually
can be taken as zero, although strictly speaking it should be regarded
as a small quantity campared to Py + yo'(0P/dy')y. The parametric
equations for Y and H in terms of y' are the same as before, only
with n = 1.

2
_ 1 . X (op/oy) 5
Yo' (3R /3yt )g (20)
g .Y “(3p/3y"), (21)

Yo' “(3 /3y ),

The general equation for the base Pressure coefficient does not involve
and hence is the same as before. '

dP :
= t
| Pp =Py + ¥, <W1 | (%)
The constant in equation (18) can be evaluated at x = ¢ instead

of at x = s. Combining such an evaluation with the sbove equation for
yields the alternate expression

H H -
) 3c_=.l_P+y(aP/ay) Pb (22)
which involves Py instead of P(0). The equations for t/c, s/c, and

can be derived easily from the preceding equations, Omitting algebraic
details, the following results are obtained:

n,

Py

Ca
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By evaluating equation (18) at x = ¢, and combining with equations (3b)
and (4), .

o

= 2302 (3P /Ay )o (23)
Po + ¥o'(0P/dy')o - Pp

by evaluating equation (22) at x = s,

P(0) - Pp
" BT 34 (35 Ve - o (24)

8
c

and by substituting n =1 and ¢ = 0 into equation (17),

ca =2 35" %5_ (€T - 1) (25)
(o]

Solution for the Specisl Case of Given Thickness Ratio
n =e, ¢ = finite

In reference 4 i1t was shown that the limiting values n =w,
o = finite, represent the suxiliery condition of a given airfoll thick-
ness ratio. The mathematical simplification inherent in the use of
approximate theories such as linearized flow enables the solution for
a given thickness ratio to be obtained directly by passing the general
solution to the limit as n->w. For shock-expansion theory, though,
a general-solution in closed explicit form cannot be obtained, and
recourse to the alternate method indicated in reference L is required.
This aslternate method deals directly with the appropriate differential
equation, which, for the case of given airfoil thickness, becomes simply

2%
oy!

vhich is satisfled by a profile composed of any number of stralght seg-
mente. Ae shown in reference L, the constant in the above equation does
not change over the entire chord, with the result that the upper half
of the profile forward of the ‘trailing edge is composed of. two straight
lines, one extending from x =0=y tox =18, ¥y = t/2, and the other
extending from x = s, y = t/2 .to the trailing edge x = ¢, y = h/2,
The slope is discontinuous at the point where y = t/2.- To obtain a
solution using sny given airfoil theory, it is necessary to satisfy the
differential equation (26), the end condition (L), and the boundary
condition of a fixed thickness ratio.

= constant (26)

_ Equation (17) for cq becomes indeterminate as n—>w becausé
I1->0. For this case, however, the shape is known and the pressure drag
can be determined from simple physical considerations;

(cd)given tfe % [Py - 7 (1 -H) - PpH]
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APPLICATION OF ANALYSIS

Flow at Infinite Mach Number

Prior to conaidering shock-expansion theory, the relatively simple
case of flow at infinite Mach number over slender airfolls with small
surface curvature will be congidered. TFor such conditions the pressure
coefficient on a surface facing upstream is proportional to the square
of the local surface slope, that is, P = Cy'2. Since the pressure coef-
ficient is zero on any surface facing downstream it follows from physical
considerations that H = 1, Equation (4) is satisfied by requiring that
yi' = O. By consideration of the differential equation (3a) as special-
ized to the present case it follows that

1/6
-g—f,—, - /ey = (Ec)l/s[x (%)n] (1- e

By substitution into equation (9), and employment of gaemma functions to
evaluate the integral in the denominator, there results

nl
§(v) = <3 f (1 - ) " Cay (27)

J6re

The function Y versus E(Y) is plotted in figure 3 for n =1, 2, 3, and .
The infinite value of n corresponds to the auxiliary condition of a
given thickness ratio, and the optimum profile in this case 1s a wedge,
since %I‘(%) =1 end E(Y)=>Y as n->»w. It is seen that there is
little difference between the three curves for finite n.

The other characteristic function needed for the complete determina-
tion of an optimum profile is n(H). By substituting H =1 in equa-
tions (12), (13), (1k), and (17), and employing equations (5), (10), and
(28), the following expressions are obtained:

2n

(1) = ] (28)
8 _(n-o0)(2n + 3) (29)
¢ n(2n + 3 - 20)

= _ 3

=% +3-20 (30)

1o 3
¢ n(2n+ 3 - 20) (31)




1k

F2Q)T s [eegem )™ -
R (33)
)

on (3 ) (2n + 3 - 20)

If desired, this last equation for the pressure drag coefficient can be
written in terms of I instead of t/c, inesmuch as I is related to
the thickness ratio through equetion (32). It should be noted that the
sbove equations relate in closed form all pertinent properties of the
optimum profile to the given quantities I, n, and o, Exemples of opti-
mum profiles determined with the aid of these equations are presented
subsequently.

Shock-Expansion Theory

When the oblique shock-weve and Prandtl-Meyer equations are combined
to calculate the pressure on an airfoil surface in supersonic flow, the
regulting equations for P are quite involved The sppropriate equa-
tion for OP/dy', however, may be obtained by starting with the local
differential relation

1 2_ (35)

%pv2 35 M2 - 1

This point relation 1s formelly the same gs the corresponding relation
applied throughout an entire flow field in linesrized supersonic airfoil
theory. The partial derivative Op/dd 1is teken with M, and 8o held
constant., Expressing equation (35) in terms of the pressure coefficlent
and free-stream conditions,

oP _ ov2 2

or, since
oP
—_— = cos2 o]
dy? 86
there results
0P .. V2 2 cos? B

' Pelee NME - 1
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This equation appears fairly simple, but is not in a form which can be
computed readily with the aid of existing tables where quentities such
as local pressure ratio p/pt and totsl-pressure ratio across a shock
wave Pt/Pt,, are tabulated, Thus, a more convenient form for calcula-
ting purposes is

2 2 o
aP' - 2 [M 5 .M_nz - l (P/Pt) @t >0052 5:' (36)
o' S = _ 1 M N M2 -1 (p /pt“) te
From this equation a numerical value of OP/dy! can be determined from

tabulated oblique-shock and expansion characteristicse once Yo', M,
and the local slope y' are specified.

The functions &(Y) and n(H) have been calculated for shock-, °
expansion theory by substituting equation (36) into equations (9) and (12),
respectively, and then performing the indicated integration graphically
by the method cutlined in sppendix A. In this process other useful
quantities sre calculated such as (JP/dy!)o and jn. The results are
presented in figures 4, 5, 6, and 7. In figure k4 the quantity

(3p/dy')o/(2/WM 2 - 1), which is equal to (BP/By')o/[(aP/By')o]60=oo,

is plotted as a function of %y for verious values of M, . Similarly,
Jn/(Jn)50=oo is plotted in figure 5. It is to be noted

1
(Jn)a = oO = 2 [ ay = . ZkE
o NMZE -1 V1-¥ JSM2-1

2forn=1
ky = {x/2 for n = 2 (37)
1.11—023...1‘01‘ n = 3

where

Curves of H2 versus B¢ for various values of base pressure are pre-
sented in figure 6, from which it is apparent that the dimensionless
trailing-edge thickness increases if elther the alrfoll thickness
increases (8, increases), or if the base pressure increases. In figure 7
the functions &Y) and n(H) for various 8&p,M,, and n are presented
plotted in the form Y versus &, and H versus n. The curves of Y

versus £ determine the shape of the optimum profile, while the curves

of H versus 1 are useful in determining I, s/c, and t/c. Meny of the
curves of Y versus £ have been terminated at the point (indicated by
small circle) corresponding to zero base pressure.

EXAMPLES AND DISCUSSION

In order to determine an optimum profile it is necessary, of course,
to know the base pressure, IExperiments have shown that base pressure in
two-dimengional flow depends principally on the Mach number, type of
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boundary-layer flow, and the boundary-layer thickness at the base,

(See reference 6.) Average experimental values are shown in figure 8
for both leminar and turbulent flow plotted as a function of the parame-
ters proportional to the ratio of boundary-layer thickness to treiling-
edge thickness. Step-by-step details of the method of determining an
optimum profile by combining experimental base pressure data with the
curves of figures 4 to 7 are given in appendix B,

In figure 9 examples of optimum profiles determined by the theory
of the present report are shown together with corresponding profiles
determined by linearized theory (reference 4). For each of the various
auxiliary conditions the particular value of I selected for these
examples is equal to that for a circular-arc biconvex airfoil of thick-
ness ratio tea/c = 0.06. Since ' -

. 22%(n1)° (tca/2)" "0
ca ~ (2n + 1)t

(see reference 4), it follows that with c¢ = 1 the optimum profiles in
figure 9 correspond to the value

_ 22(n1)*(0.03)""°
T (on + 1)t

The suxiliary condition for n = w (fig. 9(d)) corresponds to a given
maximum eirfoil thickness of 0.06c. As indicated in figure 9 (and elso
in subsequent figures of this report), the base pressure for Mg = 1.5
and Mg = 3.0 corresponds to turbulent boundary-layer flow at a Reynolds
number of 107, Since h is dinvolved in the ebscissa of figure 8, due
allowance is made for the variation of base pressure with tralling-edge
thickness. Because base pressure data are not avallable as yet for

Mg = 8, a constant value has been assumed (P = 0.1 D) Which is believed
to be reasonable for a moderately thick trailing edge (n/c ~ 0.05 or more),
but probably greatly overestimates the base drag for a thin trailing edge
(h/c ~ 0.01 or less). For Mg = ®, 1t is not necessary to know the base
pressure since the optimum profile at this 1limit is independent of pp.

In figure 10 examples are shown for various values of I with )
Mew =3, n =3, and ¢ = 0. Instead of specifying the value of I in each
case, the thickness ratio of a structurally equivalent circular-arc
biconvex airfoil is specified, as the significance of this latter value
is eagier to visualize., As would. be expected, there 1s no appreciable
difference between the profiles determined by linearized and shock-
expansion theory when the value of I 1is smell (tca/c = 0.02, for.
example), although differences are evident for larger values of I
(teg/c = 0.04 and larger).

For éach of the examples shown in figures 9 and 10, it is to be
. noted that in compsrison to the profile determined by linearized theory,
the corresponding optimum profile determined by shock-expansion theory
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has & smaller slope over the portion of surface facing upstream, a
position of maximum thickness farther aft, and a greater slope over the
portion of surface facing downstream., Thisg difference which increases
with increasing Mach number is to be expected, as indicated in refer-
ence 4, because the linearized theory overestimates the suction forces
and underestimates the positive pressure forces.

As regards drag coefficient, it is evident that drag caelculations
based on linearized theory cennot be used at hypersonic Mach numbers
since the computed coefficient spproaches zero as the Mach number
increases. Also, it is to be remembered that linearized theory is con-
siderably less accurate in predicting the drag of blunt-trailing-edge
airfoils than of sharp-trailing-edge airfoils, since the Busemsnn second-
order terms for the upstream and downstream surfaces do not cancel as

. they do when the trailing edge is sharp.

If shock-expansgion theory is used to calculate the drag of the pro-
file determined by linearized theory, the resulting value is only slightly
greater than the drag of the same profile determined by shogk-expansion
theory. In order to put this ides on a more firm quantitative basis,
the case of infinite Mach number can be considered, as the differences
between profiles determined by linear and nonlinear theory are the
greatest at this limit. (See examples in fig. 9.) By use of the expres-
sion P = Cy'2? +to calculate the drag of the profile determined by linear
theory, and dividing by the drag calculated correspondingly for the pro-
file determined by nonlinear theory, the following expression results:

kna n4+2-0 2 8 1.08 for n=1,0=0
[ J 2n(2n+3)['<.§. + %—) 1.06 for n=2,0=0

16(n+l) | (n+2)(2n+3-20) 1.07 for n=2,0=1

8 ) 1 1.04 for n=3,0=0 -
[:2(2n+3-202] n-o r (3‘) T (;) 1.0 for n-3,0=1

3(n+2-0) .00 for n=e,q finite
(38)

It is seen that at infinite Mach number the actual pressure drag of an
optimum profile whose shape is determined by linearized theory does not
exceed the drag of the true optimum profile by more than about 8 percent,

If consideration is given to the consistent differences noted earlier
between the shapes of optimum profiles determined by linear and nonlinear
theory, it is evident that linearized theory can be used with good
accuracy to determine the optimum profile at any supersonic Mach number
up to infinity.2 Even without considering the consistent difference noted
above, the profile determined by linearized theory is sufficiently accurate
for most engineering purposes. Under less general conditions a similar

2As indicated in reference 4, however, the linearized theory does not

yield a reasonably accurate profile at the low supersonic Mach numbers
near or below shock detachment,
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result also has been found in the recent investigation of Klunker and
Harder (reference T) which appeared while the present report was being
prepared, The shape of some of the optimum profiles deterumined in
reference 7, however, does not agree with the shape of analogous profiles
In this report. For example, 1t i1s indicated in reference 7 that the
profile of least drag for t/c = 0.06 has a sharp trailing edge at all
Mach numbers below about 6, whereas the corresponding profiles shown in
figure 9(d) indicste appreciamble trailing-edge thickness even at Mach
numbers of 1.5 end 3., This discrepancy is attributed to the arbiltrary
basge presgure curve agsumed in reference T which does not correspond to

measured data for thin trailing edges. -

From an engineering viewpoint 1t is deslrable to know how much lower
the drag of an optimum profile is than that of & gharp-trailing-edge
profile, and also how much the optimum profile can be altered without
slgnificantly increasing the drag. In order to prévide a basis of com~
parison, the zero-lift pressure drag of a family of sharp-trailing-edge
circular-arc bilconvex airfolls of verious thickness ratlios has been
calculated by shock-expansion theory for the Mach number range between.
1.5 and 8. The results are shown in figure 11. Thus, for any profile
the drag of a structurally equivalent (same value of I) circular-arc .
biconvex profile can be determined readily from the curves 1n figure 11
by simply calculating teg from the equation

I = Igg = 22%(nt)%(te,/2)279/(2n + 1)1

Computetions of drag have been made for a family of “"semioptimum"
profiles having arbitrarily selected values of trailing-edge bluntness H,
a shape forward of the trailing edge that yields minimum foredrag for each
particular H, and the same value of I as a circular-arc biconvex pro-
file of thickness ratio 1teg. These calculations have been carried out
for tea/c = 0.02, 0.0k, 0.06, 0.08, and 0.10 at Mach numbers of 1.5, 3,
end 8, and for various combinations of n and o. As in previous
examples, the base drag in each case was determined from the curves of
figure 8 for turbulent-boundary-layer flow &t Re = 107, The results are
shown in figure 12 plotted in the form of a drag ratio versus H. Each
curve corresponds-to a constant value of I, and is identified by the
thickness ratio (teg/c) of a circular-arc biconvex profile having the
seme value for I. In order to maintain a constant value of I, the
actual thickness ratios (@6) of the semioptimum profiles change somewhat
as H varies between O and 1 (the ratio t/tca lies between sbout 0.90
and 1.05 for the case n =1, o = 0, between sbout 0.71 and 0.84 for
n=2,0=1, and between about 0.97 and 1,08 for n = 3, ¢ = 0). For
each curve in figure 12 the semioptimum profile having the minimum drag
coincides with the optimum profile determined from the curves of fig-
ures 5 to 8., The ordinate of each minimum point indicates the relative
drag of the optimum compared to a structurally equivalent circular-arc
biconvex profile, while the rise on each side of the minimum indicates
the dreg penalty resulting from the use of too much or too little
trailing-edge thickness., It may be noted that some of the curves do not
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cover the complete range of values of H. 1In all such cases, however,
sufficient calculations were made so that the minimum point was bracketed.

Perhaps the most significant feature apparent from the curves of
figure 12 is the large increase 1n drag that results for thin airfoils
when a trailing-edge thickness considerably greater than the optimum is
employed at moderate supersonic Mach numbers. The pressure drag of full-
blunt profiles at Mach numbers of 1.5 and 3 for the case tca/c = 0,02 is
several times the pressure drag of the optimum, the exact factor varying
between asbout 2.8 and 3.9 depending on M,_, n, and g. On the other
hand, for thicker profiles (tea/c® 0.08) the pressure drag is much less
sensitive to variations in trailing-edge thickness about the optimum,
and the use of a full-blunt profile instead of the optimum would result
in a much smaller percent drag penalty. Also, for a given value of tca/c
it is evident from figure 12 that the preasure drag becomes less sensitive
to variations in trailing-edge thickness from the optimum as the Mach num-
ber is increased into the hypersonic regime.

As would be expected, the semioptimm gharp-trailing-edge profiles
(H = 0 in fig. 12) have somewhat less pressure drag than a structurally
equivalent circular-arc biconvex profile. The observed difference in
drag for thin airfoils at moderate Mach numbers is negligible for the
cagse of n =1, o = 0, since the optimum sharp-trailing-edge profile for
these conditions is very close to a circular-arc bilconvex profile (if
linearized theory were employed the optimum sharp-trailing-edge profile
for n=1, 0 =0 would be a circular-arc biconvex profile). The
corresponding difference in drag for the case n =2, ¢ = 1, however, is
significant since the optimum profile in this case has a midsection of
constant thickness, and hence 1s of considerably different shape, as
well as being considerably thinner than a structurally equivalent circular-
arc biconvex profile.

Each of the curves for M, = 1.5 and 3 (figs. 12(a) and 12(b)) show
a minimum at some finite value of H, but the curves for teg/c = 0,02 at
M =8 (£ig. 12(c)) do not.' If all other parameters were constant, this
trend would not be expected inasmuch as the optimum trailing-edge blunt-
ness for a given thickness ratio generally increases as the Mach number
is increased into the hypersonic range. (See reference 4,) The unexpected
trend is observed in the present examples because the veriation of base
pressure with trailing-edge thickness is considered et M = 1,5 and 3
where experimental measurements are availsble, but’ it 18 not considered
at Mg = 8 where, in the absence of experimental data, & constant base
pressure wes arbitrarily assumed (one-tenth of the free-stream Pressure,
irrespective of tralling-edge thickness). It is expected that if base
pressure measurements were made at Mg, = 8, they would show a dependence
on trailing-edge thickness just as at the lower Mach numbers. Conse-
quently, it is believed that the actual curves for the thimner airfoils
at Mg =8 will be greatly different than shown in figure 12(c), although
the curves for the thicker airfoils are not expected to be significantly
different. If & constant base pressure corresponding to measured values
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on thick tralling edges were assumed at My = 1.5 and 3, the curves
for tca/c = 0,02 would rise starting from H = 0 even more steeply
than at M, = 8. This 1llustrates the necessity of considering the
dependence of base pressure on trailing-edge thickness in such an
analysis.®

The drag of the various optimum profiles (minimum points in fig. 12)
is seen to be less than the drag of a structurally equivalent circular-
arc biconvex profile by amounts varying between sbout 1 percent and
53 percent, depending on the values of n, o, My, and tca/c. The largest
drag reduction occurs for the case of n =2, o =1, Just as indicated
by the linearized theory of reference L4, Likewise, the drag reduction
generally increases as the Mach number or the thickness ratio is
increased, as predicted by linearized theory.

\

CONCLUSIONS

1. TFor a given Mach number and structural requirement, the shape
and drag of the profile having the least possible pressure drag at zero
1ift, as computed from shock-expansion theory, cen be determined readily
provided the base pressure is known from experiments and provided curves
of certain characteristic functions are avallsble. (These functions

are §(Y: Bo» n): T](H: B0, n), H(So, Pb/Poo, n), Jn(so), and BP/By' (80):
examples of which are presented in figures 4 to T.)

2. A comparison of profiles determined by shock-expansion theory
and linearized theory indicates that the linearized theory may be used
with reasonable accuracy at Mach numbers up to infinity to determine the
shape of the optimum profile, although it can be used only at moderate
supersonic Mach numbers to determine the drag.

3. Considerable deviations in profile shape from the theoretical
optimum cen be made without increasing the drag excessively provided the
Mach number is high, or the asirfoil thickness ratic is relatively large.
Large drag penalties result, however, if a trailing-edge thickness
aeppreciably greater than the optimum is employed on a thin airfoil at
moderate supersonic Mach npumbers, :

i, Tt is necessary to consider the experimentally observed depend-
ence of base pressure on trailing-edge thickness when calculating the
optimum~-profile shape and drag of a thin alrfoil.

Ames Aeronauticsal Isboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., June 25, 1952
81f the boundary layer were laminar, the effect on the optimum shape of
the dependence of base pressure on trailing-edge thickness would be
even greater,
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APPENDIX A

METHOD OF CALCULATING E(Y)

The singularity at Y =1 of the integrands in equation (9) causes
difficulty when directly evaluating such integrals numerically or graphi-
cally. This difficulty, however, can be circumvented by transforming
from Y as the integration varisble to a new function fn(Y) defined as
follows:

(A1)

Y
£(7) =) —
‘[ J1-10

With this transformation the equation for &(Y) becomes

£(Y) |
§(¥) = fQ / %_ T (A2)
f *n / %i_' afy '
(o]

In this equation the integrands and the ranges of integration are all
finite. The constant kn is the same quantity as that used in refer-
ence 4, namely, :

( 2 forn=1 1
n/2 forn =2
kp = fn(1) = ¢ g (A3)
1.b023 for n = 3
L1 for n = )

The functions fn(Y), apart from an additive constant, are likewise the
same characteristic functions as appeared throughout the analysis of
reference 4 when linearized supersonic airfoil theory was employed for P.

Thus,
(2(1 - ¥/1 - YR) forn=1 ‘
gin™t Y for n = 2
(YY) =¢ 1 (Ak)
1.4023 - 3 4F(k,9?) for n = 3
Y for n = « J




22 NACA TN 2787

where F(k,?) is the incomplete ellipiic integral of the first kind of
modulus k = sin 75° = 0.9659, and amplitude . '

e W3-1sy
P = cos V3111

With the transformation to fn, the integrals in equation (A2) are
evaluated by first selecting a number of values of y' ranging from yo'
to large negative values., For each y' the ordinate Y is computed
from equation (6}, f, from equation (AL), and OP/dy' from the particu-

lar airfoil theory. A plot is then made of BP/By‘ versus fn 1in order
to evaluate the integrals determining E(Y).
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APPENDIX B
DETATIIS OF METHOD OF DETERMINING THE SHAPE AND DRAG OF

AN OPTIMUM PROFILE BY SHOCK-EXPANSION METHOD

In the shock-expansion equations the leading-edge deflection
angle 8, 1is a more convenient parameter to use than the given value
of I, hence the steps outlined below involve an iterative procedure,

(1) Assume values of 8o and py/B,
(2) Read value of HY from figure 6 and compute H

(3) Read values of &(H) and n(H) from figure 7; compute I from
equation (14) and s/c from equation (13)

(k) Read value of (OP/dy!)o from figure ki, Jn/(Jn)so = o°
from figure 5; compute (jn)so - g0 from equetion (37),
t/c from equation (15a)

(5) Compute I =T (t/2)27°

By comparison of the computed value of I with the given value, a new
value of By can be estimated. Also, from the computed value of h/c,
the experimental base pressure curves in figure 8 yield a new value of
Pb/ﬁn. By repetition of the sbove steps until the final computed value
of I 1is equal to the given value, and the final computed value of h/c
corresponds to the final base pressure assumed, all characteristics

(80, t/c, s/c, H, t(Y), (3P/dy')o, 3n, and T) of the optimum profile are
determined. The pressure drag is then calculated from equation (17).
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Figure 9 - Examples of optimum profiles; auxiliary integra/ equal fo that of
a circular-arc biconvex airfoil of thickness ratio 0.06.
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Figure 9.— Gonfinued.
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Figure 9.— Continued.
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Shock-exparnsion theory
--------- linearized theory
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Profiles coincide within width of fline
L o - — I ——
c [ ——
—| toa /202 ]
0 J Hl | E—
03
.02 ==
..Z . Az ”’ \..\ S
¢ z S=
0! // ko /Cn04 T
. |
.04
.a; /” \\N
y 2 AN
? 02 i /// / \\\
7 : tog /C=.06 :
ol ,/ T N
0
.04 e
0\3 /’/’// N\
. ’,/ \
y \\
Z,
L of—— N
y ,/ fca / [+ '.0 8
.0l v ) _
925 Z 7 : g 0
x/c

Figure [0~Examples of optimum profiles for volues of auxiliary integral equal
fo that of a circular-arc biconvex airfoll of maximum thickness lea; n=3,

0 =0; Mo=3; base pressure corresponding to furbulent flow at Re=/07
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Figure || -Pressure drag of circular-arc biconvex airfoils determined by shock-
expansion theory.
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(a) Mo=1.5, p, corresponding to furbulent flow at Re=107

Figure 12~ Effect of trailing-edge blunfness on the relative pressure drag

of semioptimum profiles compared to a structurally equivalent circular-
arc biconvex profile.
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Figure 12.— Concluded.
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